
Lecture 10
2023/2024



 2C/1L, MDCR
 Attendance at minimum 7 sessions (course or 

laboratory)
 Lectures- associate professor Radu Damian
▪ Tuesday 16-18, Online, P8

▪ E – 50% final grade

▪ problems + (2p atten. lect.) + (3 tests) + (bonus 
activity)
▪ first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)

▪ 3att.=+0.5p

▪ all materials/equipments authorized



 Laboratory – associate professor Radu Damian

▪ Tuesday 08-12, II.13 / (08:10)

▪ L – 25% final grade

▪ ADS, 4 sessions 

▪ Attendance + personal results

▪ P – 25% final grade

▪ ADS, 3 sessions (-1? 20.02.2024)

▪ personal homework



 http://rf-opto.etti.tuiasi.ro
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 RF-OPTO

▪ http://rf-opto.etti.tuiasi.ro

 David Pozar, “Microwave Engineering”, 
Wiley; 4th edition , 2011

▪ 1 exam problem  Pozar

 Photos

▪ sent by email/online exam > Week4-Week6 

▪ used at lectures/laboratory



 access to online exams requires the password 
received by email



 received by email



 The online exam app used for:

▪ lectures (attendance)

▪ laboratory

▪ project

▪ examinations



 always against a timetable

▪ long period (lecture attendance/laboratory results)

▪ short period (tests: 15min, exam: 2h)



  many numerical values/files



  many numerical values

√

×



Grade = Quality of the work +

+ Quality of the submission





 Transmission lines
 Impedance matching and tuning
 Directional couplers
 Power dividers
 Microwave amplifier design
 Microwave filters
 Oscillators and mixers ?
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 Total power delivered to the load = Incident 
power – “Reflected” power

 Return “Loss” [dB]

 time-average Power flow along the line
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 input impedance of a length l of transmission 
line with characteristic impedance Z0 , loaded 
with an arbitrary impedance ZL
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General theory



 a,b
▪ information about signal power AND signal phase

 Sij
▪ network effect (gain) over signal power including 

phase information
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Impedance Matching



Im Γ

Re Γ

|Γ|=1

+1

+1

-1

-1

|Γ|

θ=arg Γ



Im Γ

Re Γ

|Γ|=1

+1

+1

-1

-1

|Γ|

θ=arg Γ



Impedance Matching
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Exam / Project



 Shunt Stub
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation 
▪ “+” solution

▪ “-” solution
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 We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation 

imposes the sign used for the shunt stub equation
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 Series Stub
 difficult to realize in single conductor line 

technologies (microstrip)
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the series stub equation
▪ “+” solution

▪ “-” solution
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 We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation 

imposes the sign used for the series stub equation
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 adding or subtracting 180° (λ/2) doesn’t change 
the result (full rotation around the Smith Chart) 

▪ if the lines/stubs result with negative  “length”/ 
“electrical length” we add λ/2 / 180° to obtain 
physically realizable lines

 adding or subtracting 90° (λ/4) change the stub 
impedance:

▪ for the stub we can add or subtract 90° (λ/4) while in 
the same time changing open-circuit  short-circuit

=== 180 lE N= kkl ,
2



lZjZlZjZ ginscin −==  cottan 0,0,





 Charaterized with S parameters
 normalized at Z0 (implicit 50Ω)
 Datasheets: S parameters for specific bias 

conditions



 Touchstone file format (*.s2p)

! SIEMENS Small Signal Semiconductors
! VDS = 3.5 V     ID = 15 mA     
# GHz  S  MA  R  50
!  f         S11            S21            S12            S22
! GHz     MAG   ANG      MAG   ANG      MAG   ANG      MAG   ANG
 1.000 0.9800  -18.0   2.230  157.0  0.0240   74.0  0.6900  -15.0
 2.000 0.9500  -39.0   2.220  136.0  0.0450   57.0  0.6600  -30.0
 3.000 0.8900  -64.0   2.210  110.0  0.0680   40.0  0.6100  -45.0
 4.000 0.8200  -89.0   2.230   86.0  0.0850   23.0  0.5600  -62.0
 5.000 0.7400 -115.0   2.190   61.0  0.0990    7.0  0.4900  -80.0
 6.000 0.6500 -142.0   2.110   36.0  0.1070  -10.0  0.4100  -98.0
! 
!  f       Fmin   Gammaopt  rn/50
! GHz       dB    MAG  ANG    -
 2.000     1.00  0.72   27   0.84
 4.000     1.40  0.64   61   0.58
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 Two ports in which matching influences the 
power transfer

Pav S Pin
Pav L PL
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Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)
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 We obtain the equation of a circle in the 
complex plane, which represents the locus of 
ΓL for the limit between stability and 
instability (|Γin| = 1)

 This circle is the output stability circle (ΓL)
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 |Γ| = 1 → log10|Γ| = 0, the intersection with the 
plane z = 0 is a circle
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 Unconditional stability: the circuit is 
unconditionally stable if |Γin|<1 and |Γout|<1 for 
any passive impedance of the load/source

 Conditional stability: the circuit is 
conditionally stable if |Γin|<1 and |Γout|<1 only
for some passive impedance of the 
load/source

▪ passive impedance of the load/source <-> interior 
of the Smith Chart (radius 1 circle in the complex 
plane)





 The two-port is unconditionally stable if:
 two conditions are simultaneously satisfied:
▪ K > 1

▪ |Δ| < 1
 together with the implicit conditions:
▪ |S11| < 1

▪ |S22| < 1
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 ATF-34143 at Vds=3V  Id=20mA.
 @0.518GHz
 unconditionally stable for f > 6.31GHz



2Ω











Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 Two ports in which matching influences the 
power transfer

Pav S Pin
Pav L PL



 Maximum power gain (complex conjugate matching):

 For lossless matching sections

 For the general case of the bilateral transistor (S12≠0) 
Γin and Γout depend on each other so the input and 
output sections must be matched simultaneously
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Matching ZL load to Z0 source. 
We normalize ZL over Z0

We must move the point denoting 
the reflection coefficient in the area 
where with a Z0 source we have: 
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The source (eg. the transistor) 
having ZX needs to see a certain 
reflection coefficient ΓL towards 
the load Z0 

The matching circuit must move the 
point denoting the reflection 
coefficient in the area where for a Z0 
load (Γ0=0) we see towards it: 
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 The matching sections 
needed to move
▪ ΓL in Γ0

▪ Γ0 in ΓL
 are identical. They differ 

only by the order in 
which the elements are 
introduced into the 
matching circuit

 As a result, we can use in 
match design the same:
▪ methods
▪ formulae
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 A quadratic equation

 Similarly

 With variables defined as:
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 Simultaneous matching is possible if:
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 Solutions must ensure stability:
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 Simultaneous matching can be achieved if 
and only if the amplifier is unconditionally 
stable at the operating frequency, and |Γ|<1 
solutions are those with “–” sign of quadratic 
solutions
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 In the case of the simultaneous matching the 
amplifier achieves the maximum transducer 
power gain for the bilateral transistor

 If the device is not unconditionaly stable at a 
certain frequency we can use MSG (Maximum 
Stable Gain) as an indicator of the capability to 
obtain a power gain in stable conditions
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 In the case of unilateral amplifier/transistor 
(S12 = 0) simultaneous matching implies:
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 ATF-34143 at Vds=3V  Id=20mA.

▪ without stabilization K = 0.886, MAG = 14.248dB @ 
5GHz

▪ cannot be used with this bias conditions

 ATF-34143 at Vds=4V  Id=40mA

▪ without stabilization K = 1.031, MAG = 12.9dB @ 
5GHz

▪ we use this bias conditions for simultaneous matching 



 ATF-34143 at Vds=4V  Id=40mA.
 @5GHz

▪ S11 = 0.64111°

▪ S12 = 0.117-27°

▪ S21 = 2.923 -6°

▪ S22 = 0.21 111°



 Complex S Parameters

▪ S11 = -0.229+0.597·j

▪ S12 = 0.104-0.053·j

▪ S21 = 2.907-0.306·j

▪ S22 = -0.075+0.196·j
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution

▪ “-” solution
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution

▪ “-” solution
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution
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 In total there are 4 possible solutions 
input/output
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 We choose one of the two possible solutions for 
the input matching

 Similarly for the output matching
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 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 In many cases we need an approach other 
than “brute force” when we prefer to design 
for less than the maximum obtainable gain, 
in order to:
▪ improve noise behavior (Lab 3 + Lect. 10 next)

▪ improve stability

▪ improve VSWR

▪ control performance at multiple frequencies

▪ improve amplifier’s bandwidth



 Certain applications may require a certain ratio 
between maximum / minimum line voltage
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+
==
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1

min

max
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V
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 VSWR = const → Γ = const



 Quality factor Q

const
B

G
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X
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 High quality factor is equivalent with narrow 
bandwidth



 Design for maximum gain at two different 
frequencies creates an frequency unbalanced 
amplifier

[dB]

log(f)f1 f2
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 Design for maximum gain at highest frequency
 Controlled mismatch at lower frequency

▪ eventually at more frequencies inside the bandwidth
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 Assumes the amplifier device unilateral

 Maximum power gain
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 Allows estimation of the error introduced by 
the unilateral assumption

 We compute U then the maximum and 
minimum deviation of GTU from GT

▪ this deviation must be accounted in the design as 
a reserve gain against the target gain
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz

▪ S11 = 0.64139°

▪ S12 = 0.119-21°

▪ S21 = 3.165 16°

▪ S22 = 0.22 146°
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz



 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz, maximum and minimum deviation [dB]



 In the unilateral assumption:
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 If the unilateral assumption is justified :
▪ power gain added by the input matching circuit is not 

influenced by the output matching circuit

▪ power gain added by the output matching circuit is not 
influenced by the input matching circuit

 Output /Input match can be designed independently
▪ We can impose different demands for input/output

▪ Total gain is:

LST GGGG = 0        dBGdBGdBGdBG LST ++= 0
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 Maximum gain in the case of complex 
conjugate match

 For any other input matching circuit:
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz

▪ S11 = 0.64139°

▪ S12 = 0.119-21°

▪ S21 = 3.165 16°

▪ S22 = 0.22 146°
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 The normalized gain factor (linear scale!)

 Locus of the points with fixed values gs<1 
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 Equation of a circle in the complex plane where ΓS is plotted
 Interpretation: Any reflection coefficient ΓS which plotted 

in the complex plane lies on the circle drawn for gcircle = 
Gcircle/GSmax will lead to a gain GS = Gcircle

▪ Any reflection coefficient ΓS plotted outside this circle will lead to 
a gain GS < Gcircle

▪ Any reflection coefficient ΓS plotted inside this circle will lead to a 
gain GS > Gcircle
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 The centers of each family of circles lie along 
straight lines given by the angle of

 Circles are plotted (traditionally, CAD) in 
logarithmic scale ([dB])

▪ formulas are in linear scale!

 The circle for GS = 0 dB will always pass 
through the origin of the complex plane 
(center of the Smith chart )
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 Maximum gain for

 Similar computations

 Example

2

22

max
1

1

S
GL

−
== *

22SL

2

22

2

1

1

L

L
L

S
G

−

−
=

( ) 11
1

1 2

222

22

2

max

−
−

−
== S

SG

G
g

L

L

L

L
L

( ) 2

22

*
22

11 Sg

Sg
C

L

L
L

−−


=

( )
( ) 2

22

2

22

11

11

Sg

Sg
R

L

L
L

−−

−−
=

dB
S

GL 215.0051.1
1

1
2

22

max ==
−

=



2

22

2

1

1

L

L
L

S
G

−

−
=



*
22

max SLL
L

GG
=

=

2

22

2

1

1

L

L
L

S
G

−

−
=



*
22

max SLL
L

GG
=

=

 














−

−
=

2

22

2

1

1
log10

L

L
L

S
dBG



 Circles are plotted for requested values (in dB!)
 It is usefull to compute GSmax and GLmax before
▪ in order to request relevant circles



 multiple circles (families) are plotted and 
some required values are computed



 We compute G0, GSmax , GLmax 
 To obtain the design gain we choose supplemental 

gain needed (supplemental to constant G0)
▪ we account for the deviation that might arise from the 

unilateral assumption (using unilateral figure of merit U)

 We plot the circles for design (chosen) values 
GS_design , GL_design 

 We design input and output matching circuits 
which move the reflection coefficient on or inside 
the design circles (depending on specific 
application requirements)

       dBGdBGdBGdBG designLdesignSdesign _0_ ++=
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 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 Noise: random fluctuations of the signal
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 effective noise voltage

 noise power available (for maximum power 
transfer with impedance/resistance matching)
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 The noise figure F, is a measure of the reduction in signal-
to-noise ratio between the input and output of a device, 
when (by definition) the input noise power is assumed to 
be the noise power resulting from a matched resistor at T0 
= 290 K (reference noise conditions)
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 The noise figure F, is not directly a measure of the 
reduction in signal-to-noise ratio between the input 
and output of a device, when the input noise power is 
different from that of the reference noise conditions
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 In general, the output noise power consists of 
two  elements:
▪ the input noise power amplified or attenuated by the 

device (for example amplified with the power gain G 
applied also to the desired signal)

▪ a noise power generated internally by the network if 
the network is noisy (this power does not depend on 
the input noise power)



 Estimation of the internally generated noise 
power can be done using the Noise Figure F 
definition:
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 We identify the two terms:
▪ amplified input noise
▪ internally generated noise

 When the input noise does not 
correspond to reference noise 
conditions (N1 ≠ N0)
▪ the internally generated noise 

does not change

111 NSP += 222 NSP +=

( ) GNFGNN −+= 002 1

( ) GNFGNN −+= 012 1



21 GGGcas =

222 NSP +=111 NSP +=
333 NSP +=

111 NSP += 333 NSP +=

( ) 101112 1 GNFGNN −+=

( ) 202223 1 GNFGNN −+= ( ) cascascas GNFGNN −+= 013 1

( )  ( ) 2022101113 11 GNFGGNFGNN −+−+=

( ) ( ) 20221012113 11 GNFGGNFGGNN −+−+=



21 GGGcas =

222 NSP +=111 NSP +=
333 NSP +=

111 NSP += 333 NSP +=

( ) cascascas GNFGNN −+= 013 1

( ) ( ) 20221012113 11 GNFGGNFGGNN −+−+=

( )1
1

2

1

1 −+= F
G

FFcas

( ) ( ) ( ) 2102022101 111 GGNFGNFGGNF cas −=−+−



 Friis Formula (!linear scale)
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 Friis Formula shows that:
▪ the overall noise figure of a cascaded system is 

largely determined by the noise characteristics of 
the first stage

▪ the noise introduced by the following stages is 
reduced:
▪ -1

▪ division by G (usually G > 1)
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 Effects of Friis Formula:
 in multi stage amplifiers:
▪ it’s essential that the first stage is as noiseless as possible 

even if that means sacrificing power gain
▪ the following stages can be optimized for power gain

 in single stage amplifiers:
▪ in the input matching circuit it’s important to have 

noiseless elements (pure reactance, lossless lines)
▪ output matching circuit has less influence on the noise 

(noise generated at this level appears when the desired 
signal has already been amplified by the transistor)
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 An input mismatched amplifier(0)
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 Good noise figure requires good impedance 
matching
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