
Lecture 10
2023/2024



 2C/1L, MDCR
 Attendance at minimum 7 sessions (course or 

laboratory)
 Lectures- associate professor Radu Damian
▪ Tuesday 16-18, Online, P8

▪ E – 50% final grade

▪ problems + (2p atten. lect.) + (3 tests) + (bonus 
activity)
▪ first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)

▪ 3att.=+0.5p

▪ all materials/equipments authorized



 Laboratory – associate professor Radu Damian

▪ Tuesday 08-12, II.13 / (08:10)

▪ L – 25% final grade

▪ ADS, 4 sessions 

▪ Attendance + personal results

▪ P – 25% final grade

▪ ADS, 3 sessions (-1? 20.02.2024)

▪ personal homework



 http://rf-opto.etti.tuiasi.ro
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 RF-OPTO

▪ http://rf-opto.etti.tuiasi.ro

 David Pozar, “Microwave Engineering”, 
Wiley; 4th edition , 2011

▪ 1 exam problem  Pozar

 Photos

▪ sent by email/online exam > Week4-Week6 

▪ used at lectures/laboratory



 access to online exams requires the password 
received by email



 received by email



 The online exam app used for:

▪ lectures (attendance)

▪ laboratory

▪ project

▪ examinations



 always against a timetable

▪ long period (lecture attendance/laboratory results)

▪ short period (tests: 15min, exam: 2h)



  many numerical values/files



  many numerical values

√

×



Grade = Quality of the work +

+ Quality of the submission





 Transmission lines
 Impedance matching and tuning
 Directional couplers
 Power dividers
 Microwave amplifier design
 Microwave filters
 Oscillators and mixers ?
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 Total power delivered to the load = Incident 
power – “Reflected” power

 Return “Loss” [dB]

 time-average Power flow along the line
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 input impedance of a length l of transmission 
line with characteristic impedance Z0 , loaded 
with an arbitrary impedance ZL
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General theory



 a,b
▪ information about signal power AND signal phase

 Sij
▪ network effect (gain) over signal power including 

phase information
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Impedance Matching
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Impedance Matching
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Exam / Project



 Shunt Stub
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation 
▪ “+” solution

▪ “-” solution

( ) S−=+  2cos
2

1

1

2
tan

S

S
sp l

−


== − 



( ) −=+ 593.02cos  ( ) =+ 35.1262

= 85.46593.0S

== 85.46;593.0 S

( ) +=+ 35.126285.46  += 7.39 472.1
1

2
Im

2
−=

−

−
=

S

S

Sy

( ) ( ) =→+−== − 2.1241808.55Imtan 1

spSsp y 

( ) −=+ 35.126285.46  ( ) =→+−= 4.931806.86 

472.1
1

2
Im

2
+=

−

+
=

S

S

Sy ( ) == − 8.55Imtan 1

Ssp y



 We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation 

imposes the sign used for the shunt stub equation
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 Series Stub
 difficult to realize in single conductor line 

technologies (microstrip)
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the series stub equation
▪ “+” solution

▪ “-” solution

( ) +=+− 28.56292.29  = 1.43 335.1
1

2
Im

2
+=

−

+
=

S

S

Sz

( ) ( ) =→+−=−= − 2.1431808.36Imcot 1

ssSss z 

( ) =→+−= 8.1661802.13 

335.1
1

2
Im

2
−=

−

−
=

S

S

Sz

( ) S=+  2cos
2

1

1

2
cot

S

S

ss l
−


== −




−= 92.29555.0S

−== 92.29;555.0 S
( ) =+ 555.02cos  ( ) =+ 28.562

( ) −=+− 28.56292.29 

( ) =−= − 8.36Imcot 1

Sss z



 We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation 

imposes the sign used for the series stub equation
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 adding or subtracting 180° (λ/2) doesn’t change 
the result (full rotation around the Smith Chart) 

▪ if the lines/stubs result with negative  “length”/ 
“electrical length” we add λ/2 / 180° to obtain 
physically realizable lines

 adding or subtracting 90° (λ/4) change the stub 
impedance:

▪ for the stub we can add or subtract 90° (λ/4) while in 
the same time changing open-circuit  short-circuit
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 Charaterized with S parameters
 normalized at Z0 (implicit 50Ω)
 Datasheets: S parameters for specific bias 

conditions



 Touchstone file format (*.s2p)

! SIEMENS Small Signal Semiconductors
! VDS = 3.5 V     ID = 15 mA     
# GHz  S  MA  R  50
!  f         S11            S21            S12            S22
! GHz     MAG   ANG      MAG   ANG      MAG   ANG      MAG   ANG
 1.000 0.9800  -18.0   2.230  157.0  0.0240   74.0  0.6900  -15.0
 2.000 0.9500  -39.0   2.220  136.0  0.0450   57.0  0.6600  -30.0
 3.000 0.8900  -64.0   2.210  110.0  0.0680   40.0  0.6100  -45.0
 4.000 0.8200  -89.0   2.230   86.0  0.0850   23.0  0.5600  -62.0
 5.000 0.7400 -115.0   2.190   61.0  0.0990    7.0  0.4900  -80.0
 6.000 0.6500 -142.0   2.110   36.0  0.1070  -10.0  0.4100  -98.0
! 
!  f       Fmin   Gammaopt  rn/50
! GHz       dB    MAG  ANG    -
 2.000     1.00  0.72   27   0.84
 4.000     1.40  0.64   61   0.58
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 Two ports in which matching influences the 
power transfer

Pav S Pin
Pav L PL



 Available power gain
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 Unilateral transducer power gain
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Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)
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 We obtain the equation of a circle in the 
complex plane, which represents the locus of 
ΓL for the limit between stability and 
instability (|Γin| = 1)

 This circle is the output stability circle (ΓL)
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 |Γ| = 1 → log10|Γ| = 0, the intersection with the 
plane z = 0 is a circle
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 Unconditional stability: the circuit is 
unconditionally stable if |Γin|<1 and |Γout|<1 for 
any passive impedance of the load/source

 Conditional stability: the circuit is 
conditionally stable if |Γin|<1 and |Γout|<1 only
for some passive impedance of the 
load/source

▪ passive impedance of the load/source <-> interior 
of the Smith Chart (radius 1 circle in the complex 
plane)





 The two-port is unconditionally stable if:
 two conditions are simultaneously satisfied:
▪ K > 1

▪ |Δ| < 1
 together with the implicit conditions:
▪ |S11| < 1

▪ |S22| < 1
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 ATF-34143 at Vds=3V  Id=20mA.
 @0.518GHz
 unconditionally stable for f > 6.31GHz
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Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 Two ports in which matching influences the 
power transfer

Pav S Pin
Pav L PL



 Maximum power gain (complex conjugate matching):

 For lossless matching sections

 For the general case of the bilateral transistor (S12≠0) 
Γin and Γout depend on each other so the input and 
output sections must be matched simultaneously
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Matching ZL load to Z0 source. 
We normalize ZL over Z0

We must move the point denoting 
the reflection coefficient in the area 
where with a Z0 source we have: 
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V0

Zx Z0

The source (eg. the transistor) 
having ZX needs to see a certain 
reflection coefficient ΓL towards 
the load Z0 

The matching circuit must move the 
point denoting the reflection 
coefficient in the area where for a Z0 
load (Γ0=0) we see towards it: 
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|Γ|=1
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 The matching sections 
needed to move
▪ ΓL in Γ0

▪ Γ0 in ΓL
 are identical. They differ 

only by the order in 
which the elements are 
introduced into the 
matching circuit

 As a result, we can use in 
match design the same:
▪ methods
▪ formulae



 We find ΓS 
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 A quadratic equation

 Similarly

 With variables defined as:
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 Simultaneous matching is possible if:
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 Similarly
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 Solutions must ensure stability:
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 Simultaneous matching can be achieved if 
and only if the amplifier is unconditionally 
stable at the operating frequency, and |Γ|<1 
solutions are those with “–” sign of quadratic 
solutions
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 In the case of the simultaneous matching the 
amplifier achieves the maximum transducer 
power gain for the bilateral transistor

 If the device is not unconditionaly stable at a 
certain frequency we can use MSG (Maximum 
Stable Gain) as an indicator of the capability to 
obtain a power gain in stable conditions
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 Indicator across full frequency range of the 
capability to obtain a power gain
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 ATF-34143 at Vds=3V  Id=20mA.
 @0.518GHz Unconditionally

Stable

Conditionally
Stable



 ATF-34143 at Vds=3V  Id=20mA.
 @0.518GHz

Unconditionally
Stable

Conditionally
Stable



 In the case of unilateral amplifier/transistor 
(S12 = 0) simultaneous matching implies:
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 ATF-34143 at Vds=3V  Id=20mA.

▪ without stabilization K = 0.886, MAG = 14.248dB @ 
5GHz

▪ cannot be used with this bias conditions

 ATF-34143 at Vds=4V  Id=40mA

▪ without stabilization K = 1.031, MAG = 12.9dB @ 
5GHz

▪ we use this bias conditions for simultaneous matching 



 ATF-34143 at Vds=4V  Id=40mA.
 @5GHz

▪ S11 = 0.64111°

▪ S12 = 0.117-27°

▪ S21 = 2.923 -6°

▪ S22 = 0.21 111°



 Complex S Parameters

▪ S11 = -0.229+0.597·j

▪ S12 = 0.104-0.053·j

▪ S21 = 2.907-0.306·j

▪ S22 = -0.075+0.196·j
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution

▪ “-” solution
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution

▪ “-” solution
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 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation
▪ “+” solution

▪ “-” solution
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 In total there are 4 possible solutions 
input/output
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 We choose one of the two possible solutions for 
the input matching

 Similarly for the output matching







Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 In many cases we need an approach other 
than “brute force” when we prefer to design 
for less than the maximum obtainable gain, 
in order to:
▪ improve noise behavior (Lab 3 + Lect. 10 next)

▪ improve stability

▪ improve VSWR

▪ control performance at multiple frequencies

▪ improve amplifier’s bandwidth



 Certain applications may require a certain ratio 
between maximum / minimum line voltage
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 VSWR = const → Γ = const



 Quality factor Q

const
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X
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 High quality factor is equivalent with narrow 
bandwidth



 Design for maximum gain at two different 
frequencies creates an frequency unbalanced 
amplifier

[dB]

log(f)f1 f2

MAG 
MSG



 Design for maximum gain at highest frequency
 Controlled mismatch at lower frequency

▪ eventually at more frequencies inside the bandwidth

[dB]

log(f)f1 f2

MAG 
MSG



 Assumes the amplifier device unilateral

 Maximum power gain
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 Allows estimation of the error introduced by 
the unilateral assumption

 We compute U then the maximum and 
minimum deviation of GTU from GT

▪ this deviation must be accounted in the design as 
a reserve gain against the target gain
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz

▪ S11 = 0.64139°

▪ S12 = 0.119-21°

▪ S21 = 3.165 16°

▪ S22 = 0.22 146°
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz



 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz, maximum and minimum deviation [dB]



 In the unilateral assumption:
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 If the unilateral assumption is justified :
▪ power gain added by the input matching circuit is not 

influenced by the output matching circuit

▪ power gain added by the output matching circuit is not 
influenced by the input matching circuit

 Output /Input match can be designed independently
▪ We can impose different demands for input/output

▪ Total gain is:

LST GGGG = 0        dBGdBGdBGdBG LST ++= 0

( )SSS GG =
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 Maximum gain in the case of complex 
conjugate match

 For any other input matching circuit:
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 ATF-34143 at Vds=3V  Id=20mA.
 @5GHz

▪ S11 = 0.64139°

▪ S12 = 0.119-21°

▪ S21 = 3.165 16°

▪ S22 = 0.22 146°
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5.1=SG

0.1=SG

5.0=SG

Circles
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 The normalized gain factor (linear scale!)

 Locus of the points with fixed values gs<1 
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 Equation of a circle in the complex plane where ΓS is plotted
 Interpretation: Any reflection coefficient ΓS which plotted 

in the complex plane lies on the circle drawn for gcircle = 
Gcircle/GSmax will lead to a gain GS = Gcircle

▪ Any reflection coefficient ΓS plotted outside this circle will lead to 
a gain GS < Gcircle

▪ Any reflection coefficient ΓS plotted inside this circle will lead to a 
gain GS > Gcircle

( )

( )
( ) 2

11

2

11

2

11

*
11

11

11

11 Sg

Sg

Sg

Sg

S

S

S

S
S

−−

−−
=

−−


− SSS RC =−

( ) 2

11

*
11

11 Sg

Sg
C

S

S
S

−−


=

( )
( ) 2

11

2

11

11

11

Sg

Sg
R

S

S
S

−−

−−
=



 The centers of each family of circles lie along 
straight lines given by the angle of

 Circles are plotted (traditionally, CAD) in 
logarithmic scale ([dB])

▪ formulas are in linear scale!

 The circle for GS = 0 dB will always pass 
through the origin of the complex plane 
(center of the Smith chart )
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 Maximum gain for

 Similar computations

 Example
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 Circles are plotted for requested values (in dB!)
 It is usefull to compute GSmax and GLmax before
▪ in order to request relevant circles



 multiple circles (families) are plotted and 
some required values are computed



 We compute G0, GSmax , GLmax 
 To obtain the design gain we choose supplemental 

gain needed (supplemental to constant G0)
▪ we account for the deviation that might arise from the 

unilateral assumption (using unilateral figure of merit U)

 We plot the circles for design (chosen) values 
GS_design , GL_design 

 We design input and output matching circuits 
which move the reflection coefficient on or inside 
the design circles (depending on specific 
application requirements)
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Microwave Amplifiers



 For an amplifier two-port we are interested in:
▪ stability
▪ power gain
▪ noise (sometimes – small signals)
▪ linearity (sometimes – large signals)



 Noise: random fluctuations of the signal
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 effective noise voltage

 noise power available (for maximum power 
transfer with impedance/resistance matching)

kTBRV efn 4)( =

kTBPn =



 The noise figure F, is a measure of the reduction in signal-
to-noise ratio between the input and output of a device, 
when (by definition) the input noise power is assumed to 
be the noise power resulting from a matched resistor at T0 
= 290 K (reference noise conditions)
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 The noise figure F, is not directly a measure of the 
reduction in signal-to-noise ratio between the input 
and output of a device, when the input noise power is 
different from that of the reference noise conditions

KToo

ii

NS

NS
F

2900





 In general, the output noise power consists of 
two  elements:
▪ the input noise power amplified or attenuated by the 

device (for example amplified with the power gain G 
applied also to the desired signal)

▪ a noise power generated internally by the network if 
the network is noisy (this power does not depend on 
the input noise power)



 Estimation of the internally generated noise 
power can be done using the Noise Figure F 
definition:
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 We identify the two terms:
▪ amplified input noise
▪ internally generated noise

 When the input noise does not 
correspond to reference noise 
conditions (N1 ≠ N0)
▪ the internally generated noise 

does not change
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 Friis Formula (!linear scale)

( )1
1

2

1

1 −+= F
G

FFcas21 GGGcas =

+


−
+



−
+

−
+=

321

4

21

3

1

2
1

111

GGG

F

GG

F

G

F
FFcas



 Friis Formula shows that:
▪ the overall noise figure of a cascaded system is 

largely determined by the noise characteristics of 
the first stage

▪ the noise introduced by the following stages is 
reduced:
▪ -1

▪ division by G (usually G > 1)
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 Effects of Friis Formula:
 in multi stage amplifiers:
▪ it’s essential that the first stage is as noiseless as possible 

even if that means sacrificing power gain
▪ the following stages can be optimized for power gain

 in single stage amplifiers:
▪ in the input matching circuit it’s important to have 

noiseless elements (pure reactance, lossless lines)
▪ output matching circuit has less influence on the noise 

(noise generated at this level appears when the desired 
signal has already been amplified by the transistor)
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 An input mismatched amplifier(0)
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 Good noise figure requires good impedance 
matching



 Microwave and Optoelectronics Laboratory
 http://rf-opto.etti.tuiasi.ro
 rdamian@etti.tuiasi.ro
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