Lecture 10 2023/2024 Microwave Devices and Circuits for Radiocommunications

2023/2024

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
 - Tuesday 16-18, Online, P8
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

2023/2024

- Laboratory associate professor Radu Damian
 - Tuesday 08-12, II.13 / (08:10)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 20.02.2024)
 - personal homework

Materials

http://rf-opto.etti.tuiasi.ro

🔹 Laborator	ul de Microunde si Op: x +					
$\leftrightarrow \ \ni \ G$	Not secure rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0					☆ 🖪
	Main <u>Courses</u> Master Staff Research Students Admin					
	Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educ	ational software				
	Microwave Devices and Circuits for Radiocommunications (Er	iglish)				
	Course: MDCR (2017-2018)					
	Course Coordinator: Assoc.P. Dr. Radu-Florin Damian					
	Ciscipline Type: DOS; Alternative, Specialty Credits: 4					Ten
	Enrollment Year: 4, Sem. 7	dest	DE			
	Activities	(ETTIX)				
	Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:	Res V			1	3 A A
	Evaluation	1 al				1812 LASI
	Type: Examen					
	A: 50%, (Test/Colloquium) B: 25%, (Seminary/Laboratory/Project Activity) D: 25%, (Homework/Specialty papers)		Romana			
	Grades	Main	Courses	Mactor	Staff	Dec
	Aggregate Results	Piain	Courses	Master	Stall	Res
	Attendance	1144 - 64	Sector in Mass In	وليتيل ا		
	Course	Grades	Student List	<u>Exams</u>	Photos	
	LISLS Roque uni computato (final)	- I' -				
	Studenti care nu pot intra in examen	Online Ex	ams			
	Materials					-
	Course Slides	In order to partic	cipate at online e	xams you mu	st get ready	following

On the

-1-

4

Control 1

<u>MDCR Lecture 1</u> (pdf, 5.43 MB, en, 38) <u>MDCR Lecture 2</u> (pdf, 3.67 MB, en, 38) <u>MDCR Lecture 3</u> (pdf, 4.76 MB, en, 38) MDCR Lecture 4 (pdf, 5.58 MB, en, 38)

Microwave and Optoelectronics Laboratory

We are enlisted in the Telecommunications Department of the Electronics, Telecommunication and Information Technology Faculty (ETTI) from the "Gh. Asachi" Technical University (TUIASI) in Iasi, Romania

We currently cover inside ETTI the fields related to:

- Microwave Circuits and Devices
- Optoelectronics
- Information Technology

Courses

Nr	Course	Shortcut	Code	Туре	Semester	Credits	Weekly	Examination	Link			
1	Microwave Devices and Circuits for Radiocommunications	DCMR	DOS412T	DOS	7	4	0P,1L,0S,2C	Exam	details			
2	Monolithic Microwave Integrated Circuits	CIMM	RD.IA.207	DOMS	11 6		1.5L,0S,2C,0P	Exam	details			
3	Advanced Techniques in the Design of the Radio-communications Systems	TAPSR	VPSR RD.IA.103 DIMS 9 6 1.5P,0L,0S				1.5P,0L,0S,2C	Exam details				
4	Optical Communications	CO	DOS409T	DOS	7	5	0P,1L,0S,3C	Colloquium	details			
5	Optical Communications	OC	EDOS409T	DOS	7	5	0P,1L,0S,3C	Exam	details			
6	Satellite Communications	CS	RC.IA.104	DIMS	9	6	0L,0S,2C,1.5P	Exam	details			
7	Applied Informatics 1	IA1	DOF135	DOF	1	4	0P,1L,0S,2C	Verification	details			
8	Applied Informatics 1	AI1	EDOF135	DOF	1	4	0P,1L,0S,2C	Verification	details			
9	Databases, Web Programming and Interfacing	DWPI	ITT.IA.601	DIS	11	5	1P,1L,0.25S,1C	Verification	details			
10	Web Applications Design	PAW	RC.IA.108	DIMS	10	5	1L,0S,1.5C,1P	Exam	details			
11	Optoelectronics	ОРТО	DID405M	DID	8	4	0P,1L,0S,2C	Colloquium	details			
12	Microwave Devices and Circuits for Radiocommunications (English)	MDCR	EDOS412T	DOS	8	4	0P,1L,0S,2C	Exam	details			

Materials

RF-OPTO

- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
 - 1 exam problem ← Pozar

Photos

- sent by email/online exam > Week4-Week6
- used at lectures/laboratory

Online – Registration no.

access to online exams requires the password received by email

The password is communicated during the lectures. It is necessary

Password

received by email

Important message from RF-OPTO

Radu-Florin Damian

to me, POPESCU 🔻

ズA Romanian → > English → Translate message

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Reply

🗮 Reply all 🔹 🗰 Forward

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul **rf-opto** este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the **rf-opto** server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
 - Iectures (attendance)
 - Iaboratory
 - project
 - examinations

Examen online

always against a timetable

long period (lecture attendance/laboratory results)

short period (tests: 15min, exam: 2h)

Online results submission

many numerical values/files

Schema finala	Rezultate - castig	Rezultate - zgomot	Fisier justificare calcul (factor andrei)	Fisier zap (optional)	T1, fisier parmetri S	T2, fisier parmetri S	Z1	Z 2	Z 3	Z4	Z5	Z6	27	Ze1	Z01	Ze2	Zo2	Ze3	Zo3	Ze4	Zo4	Ze5	Zo5	Zei
<u>86 -</u> 5428 - 259	<u>86 -</u> 5428 - 	<u>86 -</u> 5428 - 261	<u>86 -</u> 5428 - 316		<u>86 -</u> <u>5428 -</u> <u>314</u>	<u>86 -</u> <u>5428 -</u> <u>315</u>	148.33	155.88	202.12	164.35	180.91	30.29	18 <mark>5</mark> .19	79.9	37	68.89	45.14	61.83	45.05	57.97	46.02	61.85	45.05	68.
<u>86 -</u> <u>5622 -</u> <u>259</u>	<u>86 -</u> <u>5622 -</u> <u>260</u>	<u>86 -</u> <u>5622 -</u> <u>261</u>	<u>86 -</u> <u>5622 -</u> <u>316</u>	<u>86 -</u> <u>5622 -</u> <u>262</u>	<u>86 -</u> <u>5622 -</u> <u>314</u>	<u>86 -</u> <u>5622 -</u> <u>315</u>	26.97	153.5	34.64	35.79	55.56	26.212	10.693	0	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> <u>5488 -</u> <u>259</u>	<u>86 -</u> <u>5488 -</u> <u>260</u>	<u>86 -</u> <u>5488 -</u> <u>261</u>	<u>86 -</u> <u>5488 -</u> <u>316</u>	<u>86 -</u> <u>5488 -</u> <u>262</u>	<u>86 -</u> <u>5488 -</u> <u>314</u>	<u>86 -</u> <u>5488 -</u> <u>315</u>	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> 5391 - 259	<u>86 -</u> 5391 - 260	<u>86 -</u> 5391 - 261	<u>86 -</u> 5391 - 316	-	-	-	50	50	50	50	50	50	50	70.14	40.39	61.85	44.59	55.7	45.2	54.89	45.38	58.65	45.8	70.
<u>86 -</u> <u>5664 -</u> 259	<u>86 -</u> <u>5664 -</u> <u>260</u>	86 - 5664 - 261	86 - 5664 - 316		<u>86 -</u> <u>5664 -</u> <u>314</u>	<u>86 -</u> <u>5664 -</u> <u>315</u>	168.02	150.5	178.28	133.75	92.12	121.67	144.48	<mark>94.</mark> 36	36.19	70.77	42.56	65.69	42.05	55.17	42.29	65.59	42.05	70.
<u>86 -</u> <u>5665 -</u> <u>259</u>	<u>86 -</u> <u>5665 -</u> <u>260</u>	<u>86 -</u> <u>5665 -</u> <u>261</u>	<u>86 -</u> <u>5665 -</u> <u>316</u>	-	<u>86 -</u> <u>5665 -</u> <u>314</u>	<u>86 -</u> <u>5665 -</u> <u>315</u>	162.2	80.8	209.2	140.85	135.1	183.7	167.6	94.58	36.15	78.16	39.77	65.57	45.05	65.57	45.05	78.16	39.77	94.
<u>86 -</u> <u>5433 -</u> 259	<u>86 -</u> 5433 - 260	<u>86 -</u> 5433 - 261	<u>86 -</u> <u>5433 -</u> <u>316</u>		<u>86 -</u> <u>5433 -</u> <u>314</u>	<u>86 -</u> <u>5433 -</u> <u>315</u>	165.138	106.228	226.157	130.134	72.71	180.177	164.616	101.36	36.11	77.22	42.49	68.02	45.62	60	45.42	68.02	45.62	77.
<u>86 -</u> <u>5608 -</u> <u>259</u>	<u>86 -</u> <u>5608 -</u> <u>260</u>	<u>86 -</u> <u>5608 -</u> <u>261</u>	<u>86 -</u> <u>5608 -</u> <u>316</u>	-	<u>86 -</u> <u>5608 -</u> <u>314</u>	<u>86 -</u> <u>5608 -</u> <u>315</u>	150.84	152.5	30.94	32.37	54.36	19.837	29.85	64.14	40.145	54.32	46.32	53.8	46.7	53.8	46.7	54.32	46.32	54.
<u>86 -</u> <u>5555 -</u> <u>259</u>	<u>86 -</u> <u>5555 -</u> <u>260</u>	<u>86 -</u> <u>5555 -</u> <u>261</u>	<u>86 -</u> <u>5555 -</u> <u>316</u>		<u>86 -</u> <u>5555 -</u> <u>314</u>	<u>86 -</u> <u>5555 -</u> <u>315</u>	168.001	150.288	178.399	133.115	92,491	121.257	144.126	97.05	36 <mark>.</mark> 16	71.13	43.09	65.45	42.12	55.66	42.18	65.45	42.12	71.

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission

TEM transmission lines

Course Topics

Transmission lines

- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

The lossless line

 $V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$ $I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$ $Z_{L} = \frac{V(0)}{I(0)} \qquad \qquad Z_{L} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} \cdot Z_{0}$

 voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

time-average Power flow along the line

Total power delivered to the load = Incident power – "Reflected" power
 Return "Loss" [dB] RL = -20 · log |Γ| [dB]

The lossless line

 input impedance of a length *l* of transmission line with characteristic impedance *Z_o*, loaded with an arbitrary impedance *Z_L*

General theory Microwave Network Analysis

Scattering matrix – S

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance Matching

The Smith Chart

The Smith Chart

The Smith Chart

Impedance Matching Impedance Matching with Stubs

Smith chart, r=1 and g=1

Analytical solutions

Exam / Project

Case 1, Shunt Stub

Shunt Stub

Matching, series line + shunt susceptance

Analytical solution, usage

$$\cos(\varphi + 2\theta) = -|\Gamma_{S}|$$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$$

 $|\Gamma_s| = 0.593; \quad \varphi = 46.85^\circ \qquad \cos(\varphi + 2\theta) = -0.593 \Rightarrow (\varphi + 2\theta) = \pm 126.35^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(46.85^{\circ} + 2\theta) = +126.35^{\circ}$ $\theta = +39.7^{\circ}$ Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

Solution
(46.85°+2θ) = −126.35°
$$θ = -86.6°(+180°) → θ = 93.4°$$

Im $y_s = \frac{+2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = +1.472$ $θ_{sp} = tan^{-1}(Im y_s) = 55.8°$

Analytical solution, usage

$$(\varphi + 2\theta) = \begin{cases} +126.35^{\circ} \\ -126.35^{\circ} \end{cases} \theta = \begin{cases} 39.7^{\circ} \\ 93.4^{\circ} \end{cases} \operatorname{Im}[y_{s}(\theta)] = \begin{cases} -1.472 \\ +1.472 \end{cases} \theta_{sp} = \begin{cases} -55.8^{\circ} + 180^{\circ} = 124.2^{\circ} \\ +55.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$l_{1} = \frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda = 0.110 \cdot \lambda$$

$$l_{1} = \frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda = 0.259 \cdot \lambda$$

$$l_{2} = \frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.345 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

$$l_{2} = \frac{1000}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Matching, series line + series reactance

Analytical solution, usage

$$\cos\!\left(\varphi + 2\theta\right) \!=\! \left|\Gamma_{s}\right|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_{\rm s} = 0.555 \angle -29.92^{\circ}$ $|\Gamma_s| = 0.555; \quad \varphi = -29.92^\circ \qquad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $\begin{array}{l} \textbf{``+`' Solution} \\ (-29.92^{\circ} + 2\theta) = +56.28^{\circ} \\ \theta = 43.1^{\circ} \\ \textbf{Im} z_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.335 \\ \theta_{ss} = -\cot^{-1}(\textbf{Im} z_{s}) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ} \end{array}$
 - "-" solution
 - "-" solution $(-29.92^{\circ} + 2\theta) = -56.28^{\circ}$ $\theta = -13.2^{\circ}(+180^{\circ}) \rightarrow \theta = 166.8^{\circ}$ $\operatorname{Im} z_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = -1.335 \qquad \theta_{ss} = -\cot^{-1}(\operatorname{Im} z_{s}) = 36.8^{\circ}$

Analytical solution, usage

$$(\varphi + 2\theta) = \begin{cases} +56.28^{\circ} \\ -56.28^{\circ} \end{cases} \theta = \begin{cases} 43.1^{\circ} \\ 166.8^{\circ} \end{cases} \operatorname{Im}[z_{s}(\theta)] = \begin{cases} +1.335 \\ -1.335 \end{cases} \theta_{ss} = \begin{cases} -36.8^{\circ} + 180^{\circ} = 143.2^{\circ} \\ +36.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$l_{1} = \frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda = 0.120 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

Stub, observations

 adding or subtracting 180° (λ/2) doesn't change the result (full rotation around the Smith Chart)

$$E = \beta \cdot l = \pi = 180^{\circ}$$
 $l = k \cdot \frac{\lambda}{2}, \forall k \in \mathbb{N}$

- if the lines/stubs result with negative "length"/ "electrical length" we add λ/2 / 180° to obtain physically realizable lines
- adding or subtracting 90° (λ/4) change the stub impedance:

$$Z_{in,sc} = j \cdot Z_0 \cdot \tan \beta \cdot l \quad \Leftrightarrow \quad Z_{in,g} = -j \cdot Z_0 \cdot \cot \beta \cdot l$$

 for the stub we can add or subtract 90° (λ/4) while in the same time changing open-circuit ⇔ short-circuit

Microwave Amplifiers
Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50Ω)
- Datasheets: S parameters for specific bias conditions

S2P - Touchstone

Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
! f
      S11
              S21
                       S12 S22
IGHZ MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900 -15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600 -30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100 -45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600 -62.0
5.000 0.7400 -115.0 2.190 61.0 0.0990 7.0 0.4900 -80.0
6.000 0.6500 -142.0 2.110 36.0 0.1070 -10.0 0.4100 -98.0
     Fmin Gammaopt rn/50
! f
       dB MAG ANG -
! GHz
2.000 1.00 0.72 27 0.84
4.000 1.40 0.64 61 0.58
```

Amplifier as two-port

Power / Matching

 Two ports in which matching influences the power transfer

Two-Port Power Gains

Unilateral transducer power gain

$$G_{TU} = |S_{21}|^{2} \cdot \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} \cdot \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

$$S_{12} \cong 0 \qquad \qquad \Gamma_{in} = S_{11}$$

Input and output can be treated independently

Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability
 - power gain
 - noise (sometimes small signals)
 - linearity (sometimes large signals)

Stability

L7 $\Gamma = \Gamma_r + j \cdot \Gamma_i$

$$Z_{in} \qquad \qquad \Gamma_{in} = \Gamma_r + j \cdot \Gamma_i$$

$$\Gamma_{in} = \Gamma_r + j \cdot \Gamma_i$$

$$\dot{L} = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{\left(1 - \Gamma_r\right)^2 + \Gamma_i^2}$$

instability

- $\operatorname{Re}\left\{Z_{in}\right\} < 0 \quad \Leftrightarrow \quad 1 \Gamma_r^2 \Gamma_i^2 < 0 \qquad \qquad \Gamma_r^2 + \Gamma_i^2 > 1 \qquad \left|\Gamma_{in}\right| > 1$
- stability, Z_{in}
 - conditions to be met by F_L to achieve (input) stability

$$\left| \Gamma_{in} \right| < 1 \qquad \left| S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} \right| < 1$$

- similarly Z_{out}
 - conditions to be met by Γ_S to achieve (output) stability

Output stability circle (CSOUT)

$$\left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right| = \left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

$$\left|\Gamma_{L}-C_{L}\right|=R_{L}$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_L for the limit between stability and instability (|Γ_{in}| = 1)
- This circle is the output stability circle (Γ_L)

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right|}$$

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$, $|\Gamma|=1$

• $|\Gamma| = 1 \rightarrow \log_{10} |\Gamma| = 0$, the intersection with the plane z = 0 is a circle

Contour map/lines

© 2011 Encyclopædia Britannica, Inc.

106°

108°

110°

114°

116° E

CSIN, CSOUT

Several possible positioning

Several possible positioning

Stability

- Unconditional stability: the circuit is unconditionally stable if |Γ_{in}|<1 and |Γ_{out}|<1 for any passive impedance of the load/source
 Conditional stability: the circuit is conditionally stable if |Γ_{in}|<1 and |Γ_{out}|<1 only for some passive impedance of the load/source
 - passive impedance of the load/source <-> interior of the Smith Chart (radius 1 circle in the complex plane)

Circles in wide frequency range

Rollet's condition

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|}$$

$$\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$$

- The two-port is unconditionally stable if:
- two conditions are simultaneously satisfied:
 - K > 1
 - |∆| < 1</p>
- together with the implicit conditions:
 - |S11| < 1</p>
 - S22 < 1</p>

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|} > 1$$

$$|\Delta| = |S_{11} \cdot S_{22} - S_{12} \cdot S_{21}| < 1$$

Stability

- ATF-34143 at Vds=3V Id=20mA.
- @0.5÷18GHz
- unconditionally stable for f > 6.31GHz

ADS, $Rs = 2\Omega$

Stabilization of two-port

Stabilization of two-port

Stabilization of two-port

freq, GHz

Microwave Amplifiers

Power Gain of Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability

power gain

- noise (sometimes small signals)
- linearity (sometimes large signals)

Power / Matching

 Two ports in which matching influences the power transfer

Design for Maximum Gain

The Smith Chart, matching, $Z_{L} \neq Z_{o}$

The Smith Chart, matching, $Z_L = Z_o$

The Smith Chart, matching, $Z_1 \neq Z_2, Z_1 = Z_1$

- The matching sections needed to move
 - $\Gamma_{\rm I}$ in $\Gamma_{\rm o}$
- Γ_o in Γ_c
 are identical. They differ only by the **order** in which the elements are introduced into the matching circuit
- As a result, we can use in match design the same:
 - methods
 - formulae

$$\begin{array}{l} \checkmark \quad \Gamma_{in} = \Gamma_{S}^{*} \\ \Gamma_{in} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1 - S_{22} \cdot \Gamma_{L}} \\ \Gamma_{S}^{*} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1 - S_{22} \cdot \Gamma_{L}} \end{array}$$

$$\Gamma_{out} = \Gamma_L^*$$

$$\Gamma_{out} = S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S}$$

$$\Gamma_L^* = S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S}$$

We find Γ_s

$$\Gamma_{S} = S_{11}^{*} + \frac{S_{12}^{*} \cdot S_{21}^{*}}{1/\Gamma_{L}^{*} - S_{22}^{*}} \qquad \Gamma_{L}^{*} = \frac{S_{22} - \Delta \cdot \Gamma_{S}}{1 - S_{11} \cdot \Gamma_{S}}$$

$$\Gamma_{S} \cdot \left(1 - |S_{22}|^{2}\right) + \Gamma_{S}^{2} \cdot \left(\Delta \cdot S_{22}^{*} - S_{11}\right) = \Gamma_{S} \cdot \left(\Delta \cdot S_{11}^{*} \cdot S_{22}^{*} - |S_{22}|^{2} - \Delta \cdot S_{12}^{*} \cdot S_{21}^{*}\right) + S_{11}^{*} \cdot \left(1 - |S_{22}|^{2}\right) + S_{12}^{*} \cdot S_{21}^{*} \cdot S_{22}$$

$$\Delta \cdot \left(S_{11}^{*} \cdot S_{22}^{*} - S_{12}^{*} \cdot S_{21}^{*}\right) = |\Delta|^{2}$$

$$\Gamma_{S}^{2} \cdot \left(S_{11} - \Delta \cdot S_{22}^{*}\right) + \Gamma_{S} \cdot \left(|\Delta|^{2} - |S_{11}|^{2} + |S_{22}|^{2} - 1\right) + \left(S_{11}^{*} - \Delta^{*} \cdot S_{22}\right) = 0$$
• A quadratic equation
$$\Gamma_{S} = \frac{B_{1} \pm \sqrt{B_{1}^{2} - 4 \cdot |C_{1}|^{2}}}{2 \cdot C_{1}}$$
• Similarly
$$\Gamma_{L} = \frac{B_{2} \pm \sqrt{B_{2}^{2} - 4 \cdot |C_{2}|^{2}}}{2 \cdot C_{2}}$$
• With variables defined as:
$$\begin{cases} B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|^{2} \\ C_{1} = S_{11} - \Delta \cdot S_{22}^{*} \end{cases} \begin{cases} B_{2} = 1 + |S_{22}|^{2} - |S_{11}|^{2} - |\Delta|^{2} \\ C_{2} = S_{22} - \Delta \cdot S_{11}^{*} \end{cases}$$

Simultaneous matching is possible if: $B_1^2 - 4 \cdot |C_1|^2 > 0$ $B_2^2 - 4 \cdot |C_2|^2 > 0$ $\Delta \cdot \left(S_{11}^* \cdot S_{22}^* - S_{12}^* \cdot S_{21}^* \right) = |\Delta|^2$ $|C_1|^2 = |S_{11} - \Delta \cdot S_{22}^*|^2 = |S_{12}|^2 \cdot |S_{21}|^2 + (1 - |S_{22}|^2) \cdot (|S_{11}|^2 - |\Delta|^2)$ $B_1^2 - 4 \cdot |C_1|^2 = (1 + |S_{11}|^2)^2 + (|S_{22}|^2 + |\Delta|^2)^2 -$ $-2 \cdot \left(1 + |S_{11}|^2\right) \cdot \left(|S_{22}|^2 + |\Delta|^2\right) - 4 \cdot |S_{12} \cdot S_{21}|^2 - 4 \cdot \left(1 - |S_{22}|^2\right) \cdot \left(|S_{22}|^2 - |\Delta|^2\right)$ $B_1^2 - 4 \cdot |C_1|^2 = (1 + |S_{11}|^2)^2 + (|S_{22}|^2 + |\Delta|^2)^2 -$ $-4 \cdot |S_{11}|^2 - 4 \cdot |S_{22}|^2 \cdot |\Delta|^2 - 2 \cdot (1 - |S_{11}|^2) \cdot (|S_{22}|^2 - |\Delta|^2) - 4 \cdot |S_{12} \cdot S_{21}|^2$

$$B_{1}^{2} - 4 \cdot |C_{1}|^{2} = (1 + |S_{11}|^{2})^{2} + (|S_{22}|^{2} + |\Delta|^{2})^{2} - (-4 \cdot |S_{11}|^{2} - 4 \cdot |S_{22}|^{2} \cdot |\Delta|^{2} - 2 \cdot (1 - |S_{11}|^{2}) \cdot (|S_{22}|^{2} - |\Delta|^{2}) - 4 \cdot |S_{12} \cdot S_{21}|^{2}$$

$$B_{1}^{2} - 4 \cdot |C_{1}|^{2} = (1 - |S_{11}|^{2})^{2} + (|S_{22}|^{2} - |\Delta|^{2})^{2} - 2 \cdot (1 - |S_{11}|^{2}) \cdot (|S_{22}|^{2} - |\Delta|^{2}) - 4 \cdot |S_{12} \cdot S_{21}|^{2}$$

$$B_{1}^{2} - 4 \cdot |C_{1}|^{2} = (1 - |S_{11}|^{2} - |S_{22}|^{2} + |\Delta|^{2})^{2} - 4 \cdot |S_{12} \cdot S_{21}|^{2}$$

$$B_{1}^{2} - 4 \cdot |C_{1}|^{2} = (K \cdot 2 \cdot |S_{12} \cdot S_{21}|)^{2} - 4 \cdot |S_{12} \cdot S_{21}|^{2}$$

$$B_{1}^{2} - 4 \cdot |C_{1}|^{2} = 4 \cdot |S_{12}|^{2} \cdot |S_{21}|^{2} \cdot (K^{2} - 1)$$

$$= Similarly$$

$$B_{2}^{2} - 4 \cdot |C_{2}|^{2} = 4 \cdot |S_{12}|^{2} \cdot |S_{21}|^{2} \cdot (K^{2} - 1)$$

$$\Gamma_{S} = \frac{B_{1} \pm \sqrt{B_{1}^{2} - 4 \cdot |C_{1}|^{2}}}{2 \cdot C_{1}} \qquad \Gamma_{L} = \frac{B_{2} \pm \sqrt{B_{2}^{2} - 4 \cdot |C_{2}|^{2}}}{2 \cdot C_{2}}$$

• Solutions must ensure stability: $|\Gamma_{S}| < 1 \qquad |\Gamma_{L}| < 1$ $|\Delta| = |S_{11} \cdot S_{22} - S_{12} \cdot S_{21}| < 1 \qquad \begin{cases} B_{1} > 0 \\ B_{2} > 0 \end{cases}$ $K = \frac{1 - |S_{11}|^{2} - |S_{22}|^{2} + |\Delta|^{2}}{2 \cdot |S_{12} \cdot S_{21}|} > 1 \qquad \begin{cases} B_{1}^{2} - 4 \cdot |C_{1}|^{2} = 4 \cdot |S_{12}|^{2} \cdot |S_{21}|^{2} \cdot (K^{2} - 1) > 0 \\ B_{2}^{2} - 4 \cdot |C_{2}|^{2} = 4 \cdot |S_{12}|^{2} \cdot |S_{21}|^{2} \cdot (K^{2} - 1) > 0 \end{cases}$

 Simultaneous matching can be achieved if and only if the amplifier is unconditionally stable at the operating frequency, and |Γ|<1 solutions are those with "–" sign of quadratic solutions

$$\begin{split} \Gamma_{S} &= \frac{B_{1} - \sqrt{B_{1}^{2} - 4 \cdot \left|C_{1}\right|^{2}}}{2 \cdot C_{1}} & \Gamma_{L} &= \frac{B_{2} - \sqrt{B_{2}^{2} - 4 \cdot \left|C_{2}\right|^{2}}}{2 \cdot C_{2}} \\ \begin{cases} B_{1} &= 1 + \left|S_{11}\right|^{2} - \left|S_{22}\right|^{2} - \left|\Delta\right|^{2} & \begin{cases} B_{2} &= 1 + \left|S_{22}\right|^{2} - \left|S_{11}\right|^{2} - \left|\Delta\right|^{2} \\ C_{1} &= S_{11} - \Delta \cdot S_{22}^{*} \end{cases} & \begin{cases} B_{2} &= 1 + \left|S_{22}\right|^{2} - \left|S_{11}\right|^{2} - \left|\Delta\right|^{2} \\ C_{2} &= S_{22} - \Delta \cdot S_{11}^{*} \end{cases} \end{split}$$
Simultaneous matching

In the case of the simultaneous matching the amplifier achieves the maximum transducer power gain for the bilateral transistor

$$G_{T \max} = \frac{|S_{21}|}{|S_{12}|} \cdot \left(K - \sqrt{K^2 - 1}\right)$$

 If the device is not unconditionaly stable at a certain frequency we can use MSG (Maximum Stable Gain) as an indicator of the capability to obtain a power gain in stable conditions

$$G_{MSG} = \frac{\left|S_{21}\right|}{\left|S_{12}\right|}$$

Maximum Available Gain

Indicator across full frequency range of the capability to obtain a power gain

Stability

MAG/MSG

ATF-34143 at Vds=3V Id=20mA.
@0.5÷18GHz

Simultaneous matching, unilateral transistor

In the case of unilateral amplifier/transistor (S12 = 0) simultaneous matching implies:

- ATF-34143 at Vds=3V Id=20mA.
 - without stabilization K = 0.886, MAG = 14.248dB @ 5GHz
 - cannot be used with this bias conditions
- ATF-34143 at Vds=4V Id=40mA
 - without stabilization K = 1.031, MAG = 12.9dB @ 5GHz
 - we use this bias conditions for simultaneous matching

- ATF-34143 at Vds=4V Id=4omA.
 @5GHz
 - S11 = 0.64∠111°
 - S12 = 0.117∠-27°
 - S21 = 2.923 ∠-6°
 - S22 = 0.21 ∠111°

Computations

Complex S Parameters $\left(\mathbf{n} \right)$

$$= -0.075 + 0.196 \cdot J$$

$$G_{T \max} = \frac{|S_{21}|}{|S_{12}|} \cdot \left(K - \sqrt{K^2 - 1}\right) = 19.497 = 12.9 \, \text{dB}$$

$$G_{TU \max} = \frac{1}{1 - |S_{11}|^2} \cdot |S_{21}|^2 \cdot \frac{1}{1 - |S_{22}|^2} = 15.139 = 11.8 \, \text{dB}$$

$$\begin{cases} S_{11} = 0.64 \angle 111^{\circ} \\ S_{11} = 0.64 \cdot \cos 111^{\circ} + j \cdot 0.64 \cdot \sin 111^{\circ} \end{cases}$$

0 < 1 < 1110

Computations

$$\begin{cases} B_1 = 1 + |S_{11}|^2 - |S_{22}|^2 - |\Delta|^2 \\ C_1 = S_{11} - \Delta \cdot S_{22}^* \end{cases}$$

$$\begin{cases} B_2 = 1 + |S_{22}|^2 - |S_{11}|^2 - |\Delta|^2 \\ C_2 = S_{22} - \Delta \cdot S_{11}^* \end{cases}$$

$$\begin{cases} B_1 = ?\\ C_1 = ? \end{cases}$$

$$\begin{cases} B_2 = ?\\ C_2 = ? \end{cases}$$

$$\Gamma_{S} = \frac{B_{1} - \sqrt{B_{1}^{2} - 4 \cdot \left|C_{1}\right|^{2}}}{2 \cdot C_{1}}$$

$$\Gamma_{L} = \frac{B_{2} - \sqrt{B_{2}^{2} - 4 \cdot |C_{2}|^{2}}}{2 \cdot C_{2}}$$

$$\Gamma_L = ?$$

$$\Gamma_{S} = ?$$

Computations

$$\begin{cases} B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|^{2} \\ C_{1} = S_{11} - \Delta \cdot S_{22}^{*} \end{cases}$$

$$\begin{cases} B_1 = 1.207 \\ C_1 = -0.277 + j \cdot 0.529 \end{cases}$$

$$\Gamma_{S} = \frac{B_{1} - \sqrt{B_{1}^{2} - 4 \cdot \left|C_{1}\right|^{2}}}{2 \cdot C_{1}}$$

$$\Gamma_{S} = -0.403 - j \cdot 0.768$$
$$|\Gamma_{S}| = 0.867 < 1$$
$$\Gamma_{S} = 0.867 \angle -117.7^{\circ}$$

$$\begin{cases} B_2 = 1 + |S_{22}|^2 - |S_{11}|^2 - |\Delta|^2 \\ C_2 = S_{22} - \Delta \cdot S_{11}^* \end{cases}$$

$$\begin{cases} B_2 = 0.476 \\ C_2 = -0.222 - j \cdot 0.013 \end{cases}$$

$$\Gamma_{L} = \frac{B_{2} - \sqrt{B_{2}^{2} - 4 \cdot \left|C_{2}\right|^{2}}}{2 \cdot C_{2}}$$

$$\begin{split} \Gamma_L &= -0.685 + j \cdot 0.04 \\ & \left| \Gamma_L \right| = 0.686 < 1 \\ & \Gamma_L = 0.686 \angle 176.7^\circ \end{split}$$

Shunt stub matching, L8

Analytical solution (Γ_s)

 $|\Gamma_s| = 0.867; \quad \varphi = -117.7^\circ \qquad \cos(\varphi + 2\theta) = -0.867 \Rightarrow \quad (\varphi + 2\theta) = \pm 150.1^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(-117.7^{\circ} + 2\theta) = +150.1^{\circ}$ $\theta = 133.9^{\circ}$ Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -3.477$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -74^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 106^{\circ}$
 - "-" solution $(-117.7^{\circ} + 2\theta) = -150.1^{\circ}$ $\theta = -16.2^{\circ}(+180^{\circ}) \rightarrow \theta = 163.8^{\circ}$ $\operatorname{Im} y_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +3.477$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_{s}) = 74^{\circ}$

Analytical solution (Γ_L)

$$\cos(\varphi+2\theta) = -|\Gamma_L|$$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}}$$

- $\Gamma_L = 0.686 \angle 176.7^\circ$ $|\Gamma_L| = 0.686; \quad \varphi = 176.7^\circ$
- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 "+" solution

"-" solution

Analytical solution (Γ_L)

$$\cos(\varphi + 2\theta) = -|\Gamma_L|$$

 $\Gamma_L = 0.686 \angle 176.7^{\circ}$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}}$$

 $|\Gamma_L| = 0.686; \quad \varphi = 176.7^\circ \qquad \cos(\varphi + 2\theta) = -0.686 \Rightarrow \quad (\varphi + 2\theta) = \pm 133.3^\circ$

The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

• "+" solution $(176.7^{\circ} + 2\theta) = +133.3^{\circ}$ $\theta = -21.7^{\circ}(+180^{\circ}) \rightarrow \theta = 158.3^{\circ}$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_{L}) = -62.1^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 117.9^{\circ}$ $\operatorname{Im} y_{L} = \frac{-2 \cdot |\Gamma_{L}|}{\sqrt{1 - |\Gamma_{L}|^{2}}} = -1.885$

• "-" solution $\sqrt{1-|\Gamma_L|}$ $(176.7^\circ + 2\theta) = -133.3^\circ$ $\theta = -155^\circ(+180^\circ) \rightarrow \theta = 25^\circ$ $\operatorname{Im} y_L = \frac{+2 \cdot |\Gamma_L|}{\sqrt{1-|\Gamma_L|^2}} = +1.885$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_L) = 62.1^\circ$

Complete analytical solution

 We choose one of the two possible solutions for the input matching

$$(\varphi + 2\theta) = \begin{cases} +150.1^{\circ} \\ -150.1^{\circ} \end{cases} \quad \theta = \begin{cases} 133.9^{\circ} \\ 163.8^{\circ} \end{cases} \operatorname{Im}[y_{S}(\theta)] = \begin{cases} -3.477 \\ +3.477 \end{cases} \quad \theta_{sp} = \begin{cases} -74^{\circ} + 180^{\circ} = 106^{\circ} \\ +74^{\circ} \end{cases}$$

Similarly for the output matching

$$(\varphi + 2\theta) = \begin{cases} +133.3^{\circ} \\ -133.3^{\circ} \end{cases} \quad \theta = \begin{cases} 158.3^{\circ} \\ 25.0^{\circ} \end{cases} \quad \operatorname{Im}[y_{s}(\theta)] = \begin{cases} -1.885 \\ +1.885 \end{cases} \quad \theta_{sp} = \begin{cases} 117.9^{\circ} \\ 62.1^{\circ} \end{cases}$$

In total there are 4 possible solutions input/output

ADS

EqnGT=10*log(mag(S(2,1))**2)

freq	S(2,1)	GT	S(1,1)	S(2,2)
5.000 GHz	4.415 / 157.353	12.900	0.004 / 86.088	0.004 / 37.766

ADS

freq, GHz

Microwave Amplifiers

Design for Specified Gain

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability

power gain

- noise (sometimes small signals)
- linearity (sometimes large signals)

Design for Specified Gain

- In many cases we need an approach other than "brute force" when we prefer to design for less than the maximum obtainable gain, in order to:
 - improve noise behavior (Lab 3 + Lect. 10 next)
 - improve stability
 - improve VSWR
 - control performance at multiple frequencies
 - improve amplifier's bandwidth

Constant VSWR circles

 Certain applications may require a certain ratio between maximum / minimum line voltage

Constant Q circles

Quality factor - bandwidth

 High quality factor is equivalent with narrow bandwidth

Wide bandwidth amplifier

 Design for maximum gain at two different frequencies creates an frequency unbalanced amplifier

Wide bandwidth amplifier

- Design for maximum gain at highest frequency
- Controlled mismatch at lower frequency
 - eventually at more frequencies inside the bandwidth

Design for Specified Gain

Assumes the amplifier device unilateral

Maximum power gain

$$\Gamma_{S} = S_{11}^{*} \qquad G_{TU \max} = \frac{1}{1 - |S_{11}|^{2}} \cdot |S_{21}|^{2} \cdot \frac{1}{1 - |S_{22}|^{2}}$$
$$\Gamma_{L} = S_{22}^{*}$$

Unilateral figure of merit

 Allows estimation of the error introduced by the unilateral assumption

$$\frac{1}{\left(1+U\right)^{2}} < \frac{G_{T}}{G_{TU}} < \frac{1}{\left(1-U\right)^{2}} \qquad \qquad U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1-|S_{11}|^{2}\right) \cdot \left(1-|S_{22}|^{2}\right)}$$

- We compute U then the maximum and minimum deviation of G_{TU} from G_T
 - this deviation must be accounted in the design as a reserve gain against the target gain

 $-20 \cdot \log(1+U) < G_T[dB] - G_{TU}[dB] < -20 \cdot \log(1-U)$

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
- $U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1 |S_{11}|^2\right) \cdot \left(1 |S_{22}|^2\right)} = 0.094$
 - $-0.783 \, dB < G_T [dB] G_{TU} [dB] < 0.861 \, dB$

■ S22 = 0.22 ∠146°

ATF-34143 at Vds=3V Id=20mA.

ATF-34143 at Vds=3V Id=20mA.

@5GHz, maximum and minimum deviation [dB]

Design for Specified Gain

In the unilateral assumption:

Design for Specified Gain

- power gain added by the input matching circuit is not influenced by the output matching circuit $G_s = G_s(\Gamma_s)$
- power gain added by the output matching circuit is not influenced by the input matching circuit $G_L = G_L(\Gamma_L)$
- Output /Input match can be designed independently
 - We can impose different demands for input/output
 - Total gain is:

 $G_T = G_S \cdot G_0 \cdot G_L \qquad \qquad G_T[dB] = G_S[dB] + G_0[dB] + G_L[dB]$

Input matching circuit

 Maximum gain in the case of complex conjugate match

$$\Gamma_S = S_{11}^* \Longrightarrow \qquad G_{S\max} = \frac{1}{1 - |S_{11}|^2}$$

For any other input matching circuit: $G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} < G_{S \max} = \frac{1}{1 - |S_{11}|^{2}}$

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°

$$U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1 - |S_{11}|^2\right) \cdot \left(1 - |S_{22}|^2\right)} = 0.094$$

 $-0.783 \, dB < G_T [dB] - G_{TU} [dB] < 0.861 \, dB$

$$G_{TU \max} = \frac{1}{1 - |S_{11}|^2} \cdot |S_{21}|^2 \cdot \frac{1}{1 - |S_{22}|^2} = 17.83$$
$$G_{TU \max} [dB] = 12.511 \, dB$$
$$G_{S \max} = \frac{1}{1 - |S_{11}|^2} = 1.694 = 2.289 \, dB$$

$G_{S}(\Gamma_{S})$

 $G_{S} = \frac{1 - \left| \Gamma_{S} \right|^{2}}{\left| 1 - S_{11} \cdot \Gamma_{S} \right|^{2}}$

Re Γ_s

$G_{s}(\Gamma_{s})$, constant value contours

Contour map/lines

© 2011 Encyclopædia Britannica, Inc.

106°

108°

110°

114°

116° E

$G_{s}(\Gamma_{s})$, constant value contours

$$G_{S} = \frac{1 - \left| \Gamma_{S} \right|^{2}}{\left| 1 - S_{11} \cdot \Gamma_{S} \right|^{2}}$$

$$G_{S\max} = G_S \big|_{\Gamma_S = S_{11}^*}$$

$G_{s}[dB](\Gamma_{s})$, constant value contours

Input section constant gain circles

The normalized gain factor (linear scale!) $g_{S} = \frac{G_{S}}{G_{S \max}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} \cdot (1 - |S_{11}|^{2}) < 1$ Locus of the points with fixed values g_s<1</p> $g_{S} \cdot |1 - S_{11} \cdot \Gamma_{S}|^{2} = (1 - |\Gamma_{S}|^{2}) \cdot (1 - |S_{11}|^{2})$ $\left(g_{S} \cdot |S_{11}|^{2} + 1 - |S_{11}|^{2}\right) \cdot |\Gamma_{S}|^{2} - g_{S} \cdot \left(S_{11} \cdot \Gamma_{S} + S_{11}^{*} \cdot \Gamma_{S}^{*}\right) = 1 - |S_{11}|^{2} - g_{S}$ $\Gamma_{S} \cdot \Gamma_{S}^{*} - \frac{g_{S} \cdot \left(S_{11} \cdot \Gamma_{S} + S_{11}^{*} \cdot \Gamma_{S}^{*}\right)}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} = \frac{1 - |S_{11}|^{2} - g_{S}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} + \frac{g_{S}^{2} \cdot |S_{11}|^{2}}{\left[1 - (1 - g_{S}) \cdot |S_{11}|^{2}\right]^{2}}$ $|a+b|^{2} = (a+b)\cdot(a+b)^{*} = (a+b)\cdot(a^{*}+b^{*}) = |a|^{2} + |b|^{2} + a^{*}\cdot b + a\cdot b^{*}$

Input section constant gain circles

$$\begin{split} \Gamma_{S} &- \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \bigg| = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad |\Gamma_{S} - C_{S}| = R_{S} \\ C_{S} &= \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad R_{S} = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \end{split}$$

- Equation of a circle in the complex plane where Γ_S is plotted
 Interpretation: Any reflection coefficient Γ_S which plotted in the complex plane lies on the circle drawn for g_{circle} = G_{circle}/G_{Smax} will lead to a gain G_S = G_{circle}
 - Any reflection coefficient Γ_s plotted **outside** this circle will lead to a gain G_s < G_{circle}
 - Any reflection coefficient Γ_s plotted inside this circle will lead to a gain G_s > G_{circle}

Input section constant gain circles

$$C_{S} = \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad \qquad R_{S} = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}}$$

- The centers of each family of circles lie along straight lines given by the angle of $\Gamma_{S \max} = S_{11}^*$
- Circles are plotted (traditionally, CAD) in logarithmic scale ([dB])
 - formulas are in linear scale!
- The circle for G_s = o dB will always pass through the origin of the complex plane (center of the Smith chart)

$G_{s}[dB](\Gamma_{s})$, constant value contours

Output section constant gain circles

Maximum gain for
$$\Gamma_L = S_{22}^* \implies G_{L \max} = \frac{1}{1 - |S_{22}|^2}$$

 $g_L = \frac{G_L}{G_{L \max}} = \frac{1 - |\Gamma_L|^2}{|1 - S_{22} \cdot \Gamma_L|^2} \cdot (1 - |S_{22}|^2) < 1$

Similar computations $C_{L} = \frac{g_{L} \cdot S_{22}^{*}}{1 - (1 - g_{L}) \cdot |S_{22}|^{2}}$ $R_{L} = \frac{\sqrt{1 - g_{L}} \cdot (1 - |S_{22}|^{2})}{1 - (1 - g_{L}) \cdot |S_{22}|^{2}}$ Example $G_{L \max} = \frac{1}{1 - |S_{22}|^{2}} = 1.051 = 0.215 \, dB$

$G_{L}(\Gamma_{L})$

Re Г_L

$G_L(\Gamma_L)$, constant value contours

$$G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

 $G_{L\max} = G_L \big|_{\Gamma_L = S_{22}^*}$

$G_{L}[dB](\Gamma_{L})$, constant value contours

ADS

Circles are plotted for requested values (in dB!)
 It is usefull to compute G_{Smax} and G_{Lmax} before

in order to request relevant circles

Schematic 1 – Lab 3

multiple circles (families) are plotted and some required values are computed

freq	К	MAG	NFmin	Sopt	Rn	G0	GLmax	GSmax
5.000 GHz	0.533	15.296	0.700	0.660 / 106	19.500	8.974	1.634	4.249

Design for Specified Gain

- We compute G_o, G_{Smax}, G_{Lmax}
- To obtain the design gain we choose supplemental gain needed (supplemental to constant G_o)
 - we account for the deviation that might arise from the unilateral assumption (using unilateral figure of merit U)

 $G_{design}[dB] = G_{S_design}[dB] + G_0[dB] + G_{L_design}[dB]$

- We plot the circles for design (chosen) values G_{S_design}, G_{L_design}
 We design input and output matching circuits
- We design input and output matching circuits which move the reflection coefficient on or inside the design circles (depending on specific application requirements)

Microwave Amplifiers

Low-Noise Amplifier Design

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability
 - power gain
 - noise (sometimes small signals)
 - linearity (sometimes large signals)

Noise

Noise

$$V_{n(ef)} = \sqrt{4kTBR}$$

 noise power available (for maximum power transfer with impedance/resistance matching)
 P_n = kTB

The noise figure F, is a measure of the reduction in signalto-noise ratio between the input and output of a device, when (by definition) the input noise power is assumed to be the noise power resulting from a matched resistor at To = 290 K (reference noise conditions)

$$F = \frac{S_i / N_i}{S_o / N_o} \bigg|_{T_0 = 290K} \qquad V_{n(ef)} = \sqrt{4kTBR} \\ P_n = kTB$$

 The noise figure F, is not directly a measure of the reduction in signal-to-noise ratio between the input and output of a device, when the input noise power is different from that of the reference noise conditions

$$F \neq \frac{S_i / N_i}{S_o / N_o} \bigg|_{T_0 \neq 290K}$$

- In general, the output noise power consists of two elements:
 - the input noise power amplified or attenuated by the device (for example amplified with the power gain G applied also to the desired signal)
 - a noise power generated internally by the network if the network is noisy (this power does not depend on the input noise power)

 Estimation of the internally generated noise power can be done using the Noise Figure F definition:

$$F = \frac{S_1 / N_1}{S_2 / N_2} \bigg|_{T_0 = 290 \, \text{K}, N_1 = N_0}$$

$$N_2 = F \cdot N_0 \cdot \frac{S_2}{S_1} = F \cdot N_0 \cdot G$$
$$N_2 = N_0 \cdot G + (F - 1) \cdot N_0 \cdot G$$

Noise figure of a cascaded system

$$P_{1} = S_{1} + N_{1}$$

$$F_{1}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{2$$

$$P_1 = S_1 + N_1$$

$$F_{cas}$$

$$F_{cas}$$

$$F_{cas}$$

$$\begin{split} N_{2} &= N_{1} \cdot G_{1} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} & G_{cas} = G_{1} \cdot G_{2} \\ N_{3} &= N_{2} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} & N_{3} = N_{1} \cdot G_{cas} + (F_{cas} - 1) \cdot N_{0} \cdot G_{cas} \\ \downarrow \\ N_{3} &= \begin{bmatrix} N_{1} \cdot G_{1} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \end{bmatrix} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} \\ N_{3} &= N_{1} \cdot G_{1} \cdot G_{2} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} \end{split}$$

Noise figure of a cascaded system

$$P_{1} = S_{1} + N_{1}$$

$$F_{1}$$

$$F_{1}$$

$$T_{e1}$$

$$P_{2} = S_{2} + N_{2}$$

$$G_{2}$$

$$F_{2}$$

$$F_{2}$$

$$T_{e2}$$

$$P_{3} = S_{3} + N_{3}$$

$$P_1 = S_1 + N_1$$

$$F_{cas}$$

$$F_{cas}$$

$$F_{cas}$$

$$\begin{split} N_{3} &= N_{1} \cdot G_{1} \cdot G_{2} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} \\ G_{cas} &= G_{1} \cdot G_{2} \qquad N_{3} = N_{1} \cdot G_{cas} + (F_{cas} - 1) \cdot N_{0} \cdot G_{cas} \\ (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} = (F_{cas} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} \\ F_{cas} &= F_{1} + \frac{1}{G_{1}} (F_{2} - 1) \end{split}$$

Noise figure of a cascaded system

Friis Formula (!linear scale)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

Friis Formula (noise)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

Friis Formula shows that:

- the overall noise figure of a cascaded system is largely determined by the noise characteristics of the first stage
- the noise introduced by the following stages is reduced:
 - -1
 - division by G (usually G > 1)

Friis Formula (noise)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

- Effects of Friis Formula:
- in multi stage amplifiers:
 - it's essential that the first stage is as noiseless as possible even if that means sacrificing power gain
 - the following stages can be optimized for power gain
- in single stage amplifiers:
 - in the input matching circuit it's important to have noiseless elements (pure reactance, lossless lines)
 - output matching circuit has less influence on the noise (noise generated at this level appears when the desired signal has already been amplified by the transistor)

$$V_{n(ef)} = \sqrt{4kTBR}$$
 $P_n = kTB$

Noise Figure of a Mismatched Amplifier

• An input mismatched amplifier($\Gamma \neq o$)

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro